Gamma attenuation through nano lead - nano copper PVC composites

Author:

Abbas Yehia1,El-Khatib Ahmed2,Badawi Mohamed3,Alabsy Mahmoud2,Hagag Osama4

Affiliation:

1. Department of Physics, Faculty of Science, Suez Canal University, Ismailia, Egypt

2. Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt

3. Department of Physics, Faculty of Science, Beirut Arab University, Beirut, Lebanon

4. Physics Department, Faculty of Science, Port Said University, Port Said, Egypt

Abstract

Polymer composites of polyvinyl chloride, PVC, were loaded up with micro and nano PbO/CuO particles. The added percentage of each by mass was 10 wt.%, 20 wt.%, 30 wt.%, and 40 wt.%, plus 40 wt.% of mixed composite (20 wt.% CuO + 20 wt.% PbO). The mass and linear attenuation coefficients of the investigated composites were measured as a function of gamma-ray energies going from 59.53 keV to 1408.01 keV utilizing standard radioactive point sources. To confirm the validity of these results the attenuation coefficients for bulk composites (PVC + PbO and PVC + CuO) were calculated by using the XCOM software. The results were in good agreement with the values obtained from the experimental work. By comparing the attenuation coefficients of the different composites it was found that those loaded with either nano PbO or CuO have higher values than those loaded with bulk sizes with the same percentage. Also, samples loaded with nano PbO have the highest attenuation coefficients even by comparing them with (20 wt.% CuO + 20 wt.% PbO), especially in the energy region below 1 MeV, but for greater energies, the values become very closed. The investigation of the mechanical properties of such composites due to the injection of bulk and nano metals reveals that tensile strength and Young's modulus of PVC nanocomposite sheets were notably increased with the increasing concentration of CuO and PbO nanoparticles. The CuO nanocomposite showed the highest values of flexural strength, toughness, and tensile strength among all the fabricated nanocomposite sheets.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3