On completeness of some pro-solvable Lie algebras

Author:

Abdurasulov K.K.1,Omirov B.A.2,Rakhimov I.S.3,Solijanova G.O.4

Affiliation:

1. V.I.Romanovski Institute of Mathematics Uzbekistan Academy of Sciences, Tashkent, Uzbekistan

2. National University of Uzbekistan, Tashkent, Uzbekistan + New Uzbekistan University, Tashkent, Uzbekistan + V.I. Romanovski Institute of Mathematics Uzbekistan Academy of Sciences, Tashkent, Uzbekistan

3. Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor Darul Ehsan, Malaysia

4. bNational University of Uzbekistan, Tashkent, Uzbekistan

Abstract

In the paper we describe the derivations of two N-graded infinite-dimensional Lie algebras n1 and n2 which are the positive parts of the affine Kac-Moody algebras A(1) 1 and A(2) 2 , respectively. Then we construct all pro-solvable Lie algebras whose potential nilpotent ideals are n1 and n2 and compute low-dimensional (co)homology groups of the pro-solvable Lie algebras constructed.

Publisher

National Library of Serbia

Reference39 articles.

1. K.K. Abdurasulov, B.A. Omirov, I.S. Rakhimov, G.O. Solijanova, Residually solvable extensions of an infinite dimensional filiform Leibniz algebra, Journal of Algebra 585 (2021), 697-722.

2. K.K. Abdurasulov, B.A. Omirov, G.O. Solijanova, On pro-solvable Lie algebras with maximal pro-nilpotent ideals m0 and m2, (2020), arXiv:2001.06621v1 [math.RA], https://doi.org/10.48550/arXiv.2001.06621

3. K.K. Abdurasulov, G.O. Solijanova, Maximal pro-solvable Lie algebras with maximal positively graded ideals of length 3 2 , Bulletin of the Institute of Mathematics 5 (2020), 25-32.

4. J.M. Ancochea Bermudez, R. Campoamor-Stursberg, Cohomologically rigid solvable Lie algebras with a nilradical of arbitrary characteristic sequence, Linear Algebra and Its Applications 488 (2016), 135-147.

5. Sh. Ayupov, B. Yusupov, 2-Local derivations of infinite-dimensional Lie algebras, Journal of Algebra and Its Applications 19(5) (2020), 2050100 (12 pages) DOI: 10.1142/S0219498820501005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3