A study of criticality and thermal loading in a conceptual micronuclear heat pipe reactor for space applications

Author:

Aziz Umair1,Koreshi Zafar1,Sheikh Shakil1,Khan Hamda2

Affiliation:

1. Department of Mechatronics Engineering, Air University, Islamabad, Pakistan

2. Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad, Pakistan

Abstract

Neutronic analysis of a conceptual heat pipe-cooled micronuclear reactor with 70 % enriched uranium nitride fuel is carried out by modeling the core and peripheral control drum movement to estimate the power distribution. The core configuration results in non-uniformities and hotspots. For the heat removal, empirical formulae have been used in the case of sodium, lithium, and potassium working fluids. The neutronic simulation was carried out by the OpenMC code. It has been found that the radial flux peaking as high as ~20 % can occur at various stages of the drum movement. The novelty of this research is the investigation of the effect of variable enrichment on the overall system multiplication, which can form the basis for optimal fuel distribution. It has been found that non-uniform fuel distribution can mitigate peaking factors, and thus reduce the hotspots. This analysis is useful for the design optimization of compact micro nuclear reactors for underwater, portable and space propulsion systems.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-uniform fuel distribution and thermo-mechanical analysis of a 1 MW thermal power micronuclear heat pipe reactor;Heliyon;2024-02

2. Stability of characteristics of neutron and gamma radiated overvoltage diodes;Radiation Effects and Defects in Solids;2022-07-15

3. Monte Carlo simulation in nuclear systems;Nuclear Engineering Mathematical Modeling and Simulation;2022

4. Computer codes;Nuclear Engineering Mathematical Modeling and Simulation;2022

5. The Monte Carlo method;Nuclear Engineering Mathematical Modeling and Simulation;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3