Experimental study on condensation friction pressure drop in rotating channels and proposal of new correlation

Author:

Wang Sha1,Dong Jixian1,Guo Haozeng1,Qiao Lijie1,Zhang Shulin1,Wang Jianyong1

Affiliation:

1. Department of Power Engineering, College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an, China

Abstract

The multi-channel cylinder dryer uses the small channels with high heat transfer efficiency to improve the drying efficiency. In practical working conditions, the multi-channel cylinder dryer runs under the rotating state, which would greatly affect the pressure drop of inside two-phase steam. However, the condensation friction pressure drop of two-phase flow in rotating channels has not been well explored. Herein, the condensation pressure drop of two-phase steam in rotating rectangular channels are elaborately studied based on a homemade rotating experiment system. The results show that the friction pressure drop of two-phase flow decreases with the increase of rotation Reynolds number, while increases with the increase of mass flux. Finally, a new correlation of friction pressure drop for two-phase flow condensation in rotating channels is proposed and evaluated by the experimental data.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3