Investigation on the thermodynamic analysis, preparation and characterization of LaNi5 - hydrogen storage alloy by magnesiothermic reduction diffusion process

Author:

Giresan G.1,Sankaranarayanan S.R.1,Berchmans L.J.2

Affiliation:

1. National Institute of Technology, Department of Metallurgical and Materials Engineering, Tiruchirappalli, Tamilnadu, India

2. CSIR-Central Electrochemical Research Institute, Electropyrometallurgy Division, Karaikudi, Tamilnadu, India

Abstract

The present investigation focuses on the preparation of LaNi5 intermetallic compound by ?Metallothermic reduction diffusion process?. Experiments were carried out using oxides and chlorides of La and Ni metal powders as the raw materials with granular Mg powder as the reductant. The thermal reduction process was carried out at 900 ?C for 9 hrs in Ar atmosphere. After the completion of reaction, the contents were purified by treating with dilute acetic acid followed by de-ionized water. Thermodynamic feasibility studies were carried out to determine the probabilistic nature of formation of the desired compound. Thermal analysis was carried out to find the dissociation and decomposition temperature of the reactants. The phase purity and the elemental composition of the alloy were assessed by XRD and EDX analyses. The morphological features of the prepared powders were examined by SEM. From this study, it has been concluded that LaNi5 alloy can be prepared with an appreciable purity by the Metallothermic reduction diffusion process.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3