Heat transfer analysis of insulation materials with flexible multilayers

Author:

Chen Jin-Jing1,Guo Zheng1,Yu Wei-Dong2

Affiliation:

1. Zhongyuan University of Technology, College of Textiles, Zhengzhou, China + Henan Key Laboratory of Functional Textiles Material, Zhengzhou, China

2. Donghua University, College of Textiles, Shanghai, China

Abstract

A new flexible multilayer thermal insulation material is presented for applications at harsh environment as high as 433 K or as low as 123 K. A heat transfer model is established and solved to study heat transfer through the material, including radiation, solid heat transfer and gas heat transfer. Comparison between the experimental results and the theoretical prediction shows that the model is feasible to be applied in engineering. The temperature distribution of samples with 10, 15, 20, 25, 30 layers, respectively, the radiation, solid and gas heat transfer of a sample with 10 layers are analyzed at harsh conditions (123 K and 433 K) and the normal condition as well. The theoretical thermal analysis provides an active instruction to an optimal design of such protective materials.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of optical properties of the shield on the laser heating of the treated material;2015 International Conference on Mechanical Engineering, Automation and Control Systems (MEACS);2015-12

2. On sound absorption and thermal properties of non-wovens;Thermal Science;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3