SPC5: An efficient SpMV framework vectorized using ARM SVE and x86 AVX-512

Author:

Regnault Evann1,Bramas Bérenger2

Affiliation:

1. Strasbourg University UFR de Mathématique et d’Informatique, Strasbourg, France

2. Inria Nancy CAMUS Team, Villers-lès-Nancy, France + ICube laboratory ICPS Team, Illkirch Cedex, France

Abstract

The sparse matrix/vector product (SpMV) is a fundamental operation in scientific computing. Having access to an efficient SpMV implementation is therefore critical, if not mandatory, to solve challenging numerical problems. The ARMbased AFX64 CPU is a modern hardware component that equips one of the fastest supercomputers in the world. This CPU supports the Scalable Vector Extension (SVE) vectorization technology, which has been less investigated than the classic x86 instruction set architectures. In this paper, we describe how we ported the SPC5 SpMV framework on AFX64 by converting AVX512 kernels to SVE. In addition, we present performance results by comparing our kernels against a standard CSR kernel for both Intel-AVX512 and Fujitsu-ARM-SVE architectures.

Publisher

National Library of Serbia

Reference25 articles.

1. Alappat, C., Meyer, N., Laukemann, J., Gruber, T., Hager, G., Wellein, G., Wettig, T.: Ecm modeling and performance tuning of spmv and lattice qcd on a64fx. arXiv preprint arXiv:2103.03013 (2021)

2. AOKI, R., MURAO, H.: Optimization of x265 encoder using arm sve

3. ARM: Arm architecture reference manual supplement, the scalable vector extension (sve), for armv8-a. https://developer.arm.com/documentation/ddi0584/ag/, accessed: July 2020 (version Beta)

4. ARM: Arm c language extensions for sve. https://developer.arm.com/documentation/100987/0000, accessed: July 2020 (version 00bet1)

5. Bramas, B.: Optimization and parallelization of the boundary element method for the wave equation in time domain. Ph.D. thesis, Université de Bordeaux (2016)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3