Thermal effect on the thermomechanical behavior of contacts in a Traveling Wave Tube

Author:

Chbiki Mounir1,da Silva2,Bauzin Jean-Gabriel3,Laraqi Najib3,Jarno Jean-Francois4

Affiliation:

1. Université Paris Ouest, LTIE, PST Ville d’Avray, GTE, Ville d’Avray, France + Thales Electron Devices, TED, Vélizy-Villacoublay, France

2. Supméca, LISMMA, Saint Ouen, France

3. Université Paris Ouest, LTIE, PST Ville d’Avray, GTE, Ville d’Avray, France

4. Thales Electron Devices, TED, Vélizy-Villacoublay, France

Abstract

A new elasto-plastic study of the contact between the helix and the rods of the delay line of Traveling Waves Tubes (TWT) was realized. Our study is focused on the analysis of the hot lines shrinking phenomenon. In the studied case, unlike brazed configuration, the contact areas are not perfect, resulting in a diminution of the heat transfer process. In order to maximize the contact area and to homogenize the contact pressure, a soft thermal conductive material is coated on the helix: copper was chosen for this study. In the present work, an analytical model is used to identify the properties of the copper coating at a given temperature. We focused on the mechanical properties in order to improve the assembly process with a better numerical study. Experimental method have been made to validate the proposed model. The first comparison results seem to indicate that the model represents the reality with a good agreement. It is very clearly shown that the temperature decreases the mechanical properties. (Young?s modulus, yield strength, tensile strength?). And the thickness of the coating increases the contact area. This last point is less important at room temperature (6% of increase) than at 140?C (22%).

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3