A further result on the potential-Ramsey number of G1 and G2

Author:

Du Jinzhi1,Yin Jianhua1

Affiliation:

1. School of Science, Hainan University, Haikou, P.R. China

Abstract

A non-increasing sequence ? = (d1,. . ., dn) of nonnegative integers is a graphic sequence if it is realizable by a simple graph G on n vertices. In this case, G is referred to as a realization of ?. Given a graph H, a graphic sequence ? is potentially H-graphic if ? has a realization containing H as a subgraph. Busch et al. (Graphs Combin., 30(2014)847-859) considered a degree sequence analogue to classical graph Ramsey number as follows: for graphs G1 and G2, the potential-Ramsey number rpot(G1,G2) is the smallest non-negative integer k such that for any k-term graphic sequence ?, either ? is potentially G1-graphic or the complementary sequence ? = (k - 1 - dk,..., k - 1 - d1) is potentially G2-graphic. They also gave a lower bound on rpot(G;Kr+1) for a number of choices of G and determined the exact values for rpot(Kn;Kr+1), rpot(Cn;Kr+1) and rpot(Pn,Kr+1). In this paper, we will extend the complete graph Kr+1 to the complete split graph Sr,s = Kr ? Ks. Clearly, Sr,1 = Kr+1. We first give a lower bound on rpot(G, Sr,s) for a number of choices of G, and then determine the exact values for rpot(Cn, Sr,s) and rpot(Pn, Sr,s).

Publisher

National Library of Serbia

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The potential-Ramsey numbers rpot(Cn,Ktk) and rpot(Pn,Ktk);Applied Mathematics and Computation;2023-08

2. The potential-Ramsey number of $K_n$ and $K_t^{-k}$;Czechoslovak Mathematical Journal;2022-03-01

3. A New Lower Bound on the Potential-Ramsey Number of Two Graphs;Acta Mathematicae Applicatae Sinica, English Series;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3