Research on lime rotary kiln temperature prediction by multi-model fusion neural network based on dynamic time delay analysis

Author:

Liu Zhimin1,Meng Pengzhou2,Liang Yincheng3,Li Jiahao2,Miao Shiyu2,Pan Yue1

Affiliation:

1. Mechanical and Electrical Engineering Institute, Hebei University of Engineering, Handan, China + Key Laboratory of Intelligent Industrial Equipment Technology of Hebei Province(Hebei University of Engineering),Handan, China + Collaborative Innovation Center for Modern Equipment Manufacturing of Jinan New Area, Hebei Province, Handan, China

2. Mechanical and Electrical Engineering Institute, Hebei University of Engineering, Handan, China

3. Shandong Water Conservancy Vocational College, Department of information engineering, Rizhao, China

Abstract

The lime rotary kiln systems are widely used in the metallurgical industry, where the combustion state is exceptionally complex, and it is difficult to predict and control the calcined zone's temperature. The lime rotary kiln system uses the entropy and grey correlation model, combining the lime rotary kiln operation process to determine the input and output characteristics of the model. Then, it analyzes the time lag and inertia in the lime rotary kiln combustion system to compensate for the temperature prediction in the lime rotary kiln by using the CNN-BILSTM-OC model. Correcting the expected output results with the actual situation. The experimental analysis shows that the proposed model has a higher prediction accuracy than others. The maximum relative error calculated for the future temperature prediction is 0.2098%, while the generalized average of the root mean square error of the model under different working conditions is 0.9639. The generalized average of the mean absolute error is 0.6683, which shows that the model has a strong generalization ability to meet practical applications.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3