Trace determination of isoniazid at micro level using kinetic spectrophotometric method

Author:

Yadav Rupal1,Kumar Indresh1,Naik Radhey1

Affiliation:

1. Department of Chemistry, University of Lucknow, Lucknow, (U.P.), India

Abstract

An effective and fairly inexpensive spectrophotometric method for tracing the determination of isoniazid (INH) in pure form, as well as in pharmaceutical formulations, has been developed through the ligand substitution reaction between INH and aquapentacyanoruthenate (II) ion ([Ru(CN)5OH2]3-) in aqueous medium at ?max = 502 nm. The fixed time procedure has been employed under optimum reaction conditions. The calibration equations, relating absorbance measured at 502 nm at fixed times (tn = 2, 5 and 7 min) and cINH in linear range 1.37-27.43 ?g mL-1, were used for the trace determination of INH, which has been reported in the present investigation and are in agreement with official and reported methods. The percentage recovery has been calculated and found to be within the range of 99?101 % in the analysis of different pharmaceutical samples. The results reveal that the use of common recipients as the used additives do not produce any type of interference in the suggested method. The validity of the proposed method was also checked by statistical analysis which agreed with the results obtained using the official method. The present method is very simple, reproducible, sensitive and it can be adopted for trace determination of INH in different samples without using extracting agent.

Publisher

National Library of Serbia

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3