Affiliation:
1. Institut préparatoire aux études d’ingénieurs de Monastir, Département de Mathématiques Rue Ibn Eljazzar, Monastir, Tunisia
2. Faculté des Sciences de Monastir, Département de Mathématiques Avenue de l’environnement, Monastir, Tunisia
Abstract
Asignificant amount of elegant work has been accomplished in the study of
partial isometries. In this article, weintroduce a new class of operators,
referred to as the (k,m,n)-partial isometries, which extends the concept of
partial isometry. We delve into the most intriguing outcomes related to this
class by extending previously established results for partial isometries and
by exploring new results on partial isometries. We investigate the
relationship of this new class of operators with classical notions of
operators, such as partial isometries, power partial isometries, paranormal,
semi-regular, and quasi-Fredholm. Additionally, we examine some fundamental
properties and structure theorems of (k,m,n)-partial isometries.
Furthermore, we provide spectral properties of (k,m,n)-partial isometries.
Publisher
National Library of Serbia
Reference38 articles.
1. P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer, (2004).
2. M. A. Aouichaoui and H. Skhiri, NA-Isometric Operators on Hilbert Spaces, Acta Appl Math. 181:11(2022).
3. C. Apostol, Propriétés de certains opérateurs bornés des espaces de Hilbert II, Rev. Roum. Math. Purs Appl. 12(1967), 759-762.
4. M. L. Arias and M. Mbekhta, On partial isometries in C*-algebras, Studia Math. 205:1(2011), 71-82.
5. S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13(1962), 111-114.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献