Effect of donor and acceptor dopants on the microstructure and dielectric properties of barium titanate based ceramics

Author:

Paunovic Vesna1,Prijic Zoran1,Mitic Vojislav1

Affiliation:

1. University of Niš, Faculty of Electronic Engineering, Niš, Serbia

Abstract

This paper examined the microstructural and dielectric characteristics of BaTiO3 - based ceramics of the general formula BaTi1-x-yNbxMnyO3. The concentration of Mn as acceptor was variable 0.01 and 0.05 at%, while the donor (Nb) was fixed at 0.5 at%. The starting ceramic powders were produced by a conventional solid-state reaction method and sintered at 1290 and 1320oC. In BaTiO3 ceramics doped with a higher Mn concentration (0.05 at% Mn) at a sintering temperature of 1290?C, a bimodal structure with a grain of 10-30 ?m, and 1-5 ?m, was obtained. Sintering at a higher temperature (Tsin = 1320?C), regardless of Mn content, provides the achievement of a uniform microstructure with grains under than 6 ?m. The ceramics doped with 0.01 at% Mn and sintered at 1320?C are characterized by high values of the dielectric constant at room temperature and notable changes in the dielectric constant with temperature. Nb-0.05Mn BaTiO3 doped ceramics sintered at 1290?C show lower dielectric constant values due to the presence of Mn-enriched areas representing paraelectric regions. Areas richer in Mn are associated with the fine-grained structure. The dielectric constant in the investigated systems achieves a constant value for frequencies higher than 3kHz. The Curie temperature of all samples was shifted to lower values in relation to undoped BaTiO3 ceramics. According to Curie-Weiss law were determined the Curie constant C and the Curie temperature Tc.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3