Operating parameter optimization of cell surface hydrophobicity test for ureolytic bacteria

Author:

Sovljanski Olja1ORCID,Pezo Lato2ORCID,Tomic Ana1ORCID,Ranitovic Aleksandra1,Cvetkovic Dragoljub1,Markov Sinisa1

Affiliation:

1. University of Novi Sad, Faculty of Technology Novi Sad, Laboratory of Microbiology, Novi Sad, Serbia

2. University of Belgrade, Institute of General and Physical Chemistry, Belgrade, Serbia

Abstract

As one of the main non-covalent relations in microbiological-based systems, cell surface hydrophobicity (CSH) can be observed as a relevant parameter for biodegradation capability and suggested bacterial behaviour and biofilm formation during a bioremediation process. On the other hand, the role of ureolytic bacteria in bioremediation has subsequently led to the examination of this bacterial type in different engineering fields. In order to optimize the operating parameters of microbial adhesion to hydrocarbons test (MATH) for ureolytic bacteria, Box?Behnken experimental design was conducted for five ureolytic bacteria isolated from soils, as well as for the reference strain Sporosarcina pasteurii DSM 33. The optimization was completed with and without the essential substrate for the targeted metabolic reaction, with the aim to compare differences in bacterial hydrophobicity. A vortex time of 2 min, a hydrocarbon volume of 0.5 mL, and a phase separation time of 15 min are recommended as MATH operating parameters for all tested ureolytic bacteria. Although all bacteria are hydrophobic, lower CSH values in the presence of urea were observed for the same bacterium, which could be explained by the interaction of urea with the organic phase of the separation system, as well as a rapid ureolysis process that also occurs during the application of ureolytic bacteria in biotechnology systems.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3