Effect of oxygen potential and fluxing components on phase relations during sintering of iron ore

Author:

Kongoli F.,Mcbow I.,Budd R.,Llubani S.,Yazawa A.

Abstract

The optimal operation of the blast furnace depends considerably on the properties of the sinter fed into the furnace. As a result, the optimization of the sintering processes has a direct effect on the overall effectiveness of the iron making processes. In order to produce a good sinter special care needs to be taken in order to assure it has a good permeability and reducibility and it is able to retain these properties for a certain time. If the sinter starts to melt down early in the upper part of the blast furnace, where its solid state reduction is essential, permeability decreases, the gas channels get blocked, reductibility diminishes and serious problems may also follow. Among the factors that influences the above mentioned sinter properties are the oxygen potential and fluxing components. Nevertheless, their effect on the phase relations during sintering and sinter reduction conditions has not yet entirely clarified and confusion exists in literature. This quantification becomes even more important today where many new minor components such as Al2O3 and MgO enter the sinter through raw materials. This work quantifies the effect of oxygen potential and fluxing components such as alumina and magnesia on the liquidus and phase relations of the sinter primary melts in the iron rich portion of CaO-FeO-Fe2O3-SiO2 system at sintering conditions. This is carried out by the means of new type of industrial diagrams in the form of Fe/CaO vs. SiO2 that can directly help the optimization of the sintering processes.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3