Affiliation:
1. Ivan Franko National University of Lviv, Ukraine + Jan Kochanowski University in Kielce, Poland
2. Department of Mathematics, Ben-Gurion University of the Negev, Israel
Abstract
Let L(X) be the free locally convex space over a Tychonoff space X. We prove
that the following assertions are equivalent: (i) every functionally bounded
subset of X is finite, (ii) L(X) is semi-reflexive, (iii) L(X) has the
Grothendieck property, (iv) L(X) is semi-Montel. We characterize those
spaces X, for which L(X) is c0-quasibarrelled, distinguished or a (d f)-space. If X is a convergent sequence, then L(X) has the Glicksberg
property, but the space L(X) endowed with its Mackey topology does not have
the Schur property.
Publisher
National Library of Serbia
Reference25 articles.
1. T. Banakh, Fans and their applications in General Topology, Functional Analysis and Topological Algebra, arXiv:1602.04857.
2. T. Banakh, S. Gabriyelyan, On the Ck-stable closure of the class of (separable) metrizable spaces, Monatshefte Math. 180 (2016) 39-64.
3. T. Banakh, A. Leiderman, ωω-dominated function spaces and ωω-bases in free objects in topological algebra, Topology Appl. 241 (2018) 203-241.
4. H. Buchwalter, Parties bornées d’un espace topologique complètement régulier, Séminaire Choquet, 9e année, N 14, 1969-1970.
5. R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献