Formation of ceramic bodies using submicron msno3 (m = ba, zn, ca) particles and evaluation of their electric behaviour in different atmospheres

Author:

Ochoa-Muñoz Yasser1,Álvarez-Láinez Mónica2,Rodríguez-Páez Jorge3,Mejía de1

Affiliation:

1. Composites Materials Group (CENM), School of Materials Engineering, Universidad del Valle, Cali, Colombia

2. Product Design Engineering Department, Engineering School, Universidad EAFIT, Medellin, Colombia

3. Ceramic Materials Science and Technology Group (CYTEMAC), Department of Physics, Universidad del Cauca, Popayán, Colombia

Abstract

In this work, the most suitable conditions were determined for shaping ceramic bodies of the MSnO3 system (M = Ba, Zn, Ca), using submicron particles of these perovskites synthesized by a chemical route. For this, the rheological behaviours of colloidal suspensions of the MSnO3 powders (M = Ba, Zn, Ca) were studied considering the effects of solid content and concentration of ammonium polyacrylate (APA). The results indicated that the optimal solids contents for stable suspensions in each system were 13.8 (BaSnO3), 19.4 (ZnSnO3), and 21.5 vol.% (CaSnO3). The suspensions containing BaSnO3 and ZnSnO3 showed large reductions in viscosity, approximately 87%, when APA (0.5-0.8wt.%) was added. In contrast, the CaSnO3 suspension did not show significant changes after addition of APA. Slip casting of the stable suspensions allowed formation of porous green bodies, which were subsequently sintered in the range 1000-1500 ?C. Considering their potential use as gas sensors, a preliminary study of the sintered bodies showed high detection responses (Ra/Rg) toward 80 ppm reducing gas at operating temperature of 270 ?C, especially ZnSnO3 to acetone and ethanol vapours, BaSnO3 to ethanol vapour and CaSnO3 to toluene vapour.

Publisher

National Library of Serbia

Subject

Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3