A diesel engine performance measurement with diesel fuel and biodiesel

Author:

Pesic Radivoje1ORCID,Davinic Aleksnadar2

Affiliation:

1. Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia

2. University of Kragujevac, Faculty of Engineering, Kragujevac, Serbia

Abstract

Rapid growth in the energy consumption has conditioned the need for discovering the alternative energy resources which would be adapted to the existing engine constructions and which would satisfy the additional criteria related to the renewability, ecology, and reliability of use. The experimental research are conducted according to the (European Stationary Cycle - Directive 1999/96/EC) 13-mode. Using biodiesel fuel average thermal efficiency is kept at the level of the application of conventional diesel fuel, average emission of CO is reduced by 13.6%, average emission of NO is increased by x 27.6%, average emission of hydrocarbon is increased by 59.4%, and average particles emission is reduced by 43.2%.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Profile of equilibrium compositions of the aqueous ethanol-gasoline (RONs 88), aqueous ethanol-gasoline (RONs 90), and aqueous ethanol-gasoline (RONs 92) in stable emulsion;AIP Conference Proceedings;2024

2. Study of composition of the aqueous ethanol-kerosene in a single phase;THE 2ND INTERNATIONAL CONFERENCE ON NATURAL SCIENCES, MATHEMATICS, APPLICATIONS, RESEARCH, AND TECHNOLOGY (ICON-SMART 2021): Materials Science and Bioinformatics for Medical, Food, and Marine Industries;2023

3. A Review on Biodiesel: From Feedstock to Utilization in Internal Combustion Engines;Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi;2021-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3