Hot deformation behavior of micro-alloyed steel using processing maps developed with different constitutive equations

Author:

Thakur S.K.1,Das A.K.2,Jha B.K.3

Affiliation:

1. Steel Authority of India Ltd., R&D Centre for Iron & Steel, Ranchi, India + IIT(ISM), Mechanical Engineering, Dhanbad, India

2. IIT(ISM), Mechanical Engineering, Dhanbad, India

3. National Institute of Foundry & Forge Technology (NIFFT), Department of Materials & Metallurgy, Ranchi, India

Abstract

The hot workability of microalloyed steel was studied in the deformation temperature range of 850?1200?C and strain rate of 0.001-100s-1. The constitutive relation of flow stress with temperature, strain rate and strain was established to construct processing maps of the microalloyed steel. The processing maps were constructed using conventional power law, integral method, and Arrhenius equations. The developed processing maps were used to predict the optimal hot deformation conditions and were validated with metallurgical examinations. The safe regime for hot working of the experimental steel was found to be in the intermediate temperature-strain rate range (1000-1150?C;0.001-10 s-1), where the deformation process was dominated by dynamic recrystallization and dynamic recovery of the austenitic phase. The processing map constructed using Arrhenius equations increased continuously with an increase in deformation temperature and decrease in strain rate and it did not reveal relevant information of hot workability with respect to deformation temperature and strain rate. The dynamic recrystallization behavior of experimental steel was affected by both deformation temperature and strain rate which was explained in detail through microstructural examination.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3