Heat transfer enhancement in the complex geometries filled with porous media

Author:

Rashed Zeinab1,Ahmed Sameh2,Aly Abdelraheem2

Affiliation:

1. Mathematics Department, Faculty of Science and Arts, Jouf University, Qurayyat, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Abha, King Khalid University, Saudi Arabia + Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt

Abstract

The present numerical investigation aims to analysis the enhancement heat transfer in the nanofluid filled-complex geometries saturated with a partially layered porous medium. The vertical walls of the cavity are taken as complex wavy geometries. The horizontal walls of the cavity are flat with insulated temperature. The complex wavy cavity is filled with a nanofluid and the upper half of the wavy cavity is saturated with the porous medium. In the analysis, the governing equations are formulated for natural convection under the Boussinesq approximation in various environments including pure-fluid, nanofluid, and porous medium. In this investigation, the effects of the Rayleigh number (103 ? Ra ? 105), Darcy parameter (10?6 ? Da ? 10?3), thermophoresis parameter (0.1 ? Nt ? 0.5), nanofluid buoyancy ratio (0.1 ? Nr ? 0.5), Brownian motion parameter (0.1 ? Nb ? 0.5), inclination angle (0? ? ? ? 90?), and geometry parameters ?1 and R have been studied on the streamlines, temperature, nanoparticles volume fraction, local Nusselt number, and the local Sherwood number. It is found that, the performance of the heat transfer can be improved by adjusting the geometry parameters of the wavy surface. Overall, the results showed that the nanofluid parameters enhance the convection heat transfer and the obtained results provide a useful insight for enhancing heat transfer in two separate layers of nanofluid and porous medium inside complex-wavy cavity.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3