Screening the binding affinity of bile acid derivatives for the glucocorticoid receptor ligand-binding domain

Author:

Bjedov Srdjan1ORCID,Bekic Sofija2ORCID,Marinovic Maja2,Skoric Dusan1ORCID,Pavlovic Ksenija1ORCID,Celic Andjelka2ORCID,Petri Edward2ORCID,Sakac Marija1ORCID

Affiliation:

1. Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia

2. Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia

Abstract

The necessity of anti-inflammatory drugs such as glucocorticoids has been evident during the COVID-19 pandemic. Glucocorticoids, are the standard therapy for the treatment of moderate and severe COVID-19 patients. However, serious side effects limit the use of these drugs, and anti-inflammatory drugs with better pharmacological properties are urgently required. Bile acids are of interest, because of their anti-inflammatory and immunomodulatory properties, facilitated through an unclear mechanism involving transmembrane and nuclear receptors. In this work, we screened the binding activity of a number of bile acid derivatives, for the ligand-binding domain of glucocorticoid receptor (GR-LBD), the most important receptor for anti-inflammatory processes. Tested compounds include oximes, lactones, lactams, tetrazoles, dienones, C-24 alcohols and cholic acid amides. Cholic acid oxime, deoxycholic acid dienone, 3-keto-24-cholic alcohol and cholic acid amide showed best binding affinities for GR-LBD among tested compounds. The in silico molecular docking explanation is provided. SAR analysis showed that expansion of B and C steroid rings or attachment of heterocycle to C ring is not beneficial for binding; side chain should contain hydrogen donor group; the GR-LBD tolerate well different functionalities on C-3 position. These results provide valuable information toward synthesis of the new glucocorticoids based on bile acids.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3