Thermographic properties of Eu3+ and Sm3+ doped Lu2O3 nanophosphor

Author:

Lojpur Vesna1,Antic Zeljka1ORCID,Krsmanovic Radenka1,Medic Mina1ORCID,Nikolic Marko1,Dramicanin Miroslav1ORCID

Affiliation:

1. Vinča Institute of Nuclear Sciences, Belgrade

Abstract

The samples, Lu2O3:Eu3+ (3at.% Eu) and Lu2O3:Sm3+ (1at.% Sm), were prepared via polymer complex solution method using polyethlylene-glyocol as the fuel and as nucleation agent for crystallization process. Knowing that lutetium oxide has high chemical stability and temperature resistance, in this paper we investigated possibility for its application in high-temperature phosphor thermometry. It is a non-contact technique that uses the thermal dependence of phosphor fluorescence to measure temperature remotely. The structural and morphological properties were performed through X-ray powder diffraction (XRPD) and transmission electron microscopy (TEM) investigations. The obtained results confirmed that this synthesis yields desired crystalline structure with particle size in the range from 30 to 50 nm. Photoluminescence emission measurements were recorded in the temperature range from room up to 873 K. The accomplished results demonstrate the performance of Eu3+ and Sm3+ doped Lu2O3 as high temperature thermographic phosphors of very good sensitivity.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3