Preparation and characterization of physico-mechanical and structural properties of phthalimide derivative polymeric nanocomposites

Author:

Ozkan Bilici Vildan1,Kaya Esin2

Affiliation:

1. Department of Physics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey

2. Department of Mathematics and Science Education, Faculty of Education, Mus Alparslan University, Mus, Turkey

Abstract

In this study, phthalimide derived polymer-TiO2 nanocomposites were prepared by direct mixing method and their mechanical properties were compared. The high content filler polymer nanocomposites with sufficient interface bonding with the polymer matrix have been prepared to maximize the properties of the filler. In the direct mixing method, the polymer obtained by free radical polymerization of the monomer was mixed with TiO2 in high weight percentages. The pulse-echo method was used to characterize the elastic constants of the polymer and polymer-TiO2 nanocomposites through detection of the ultrasonic waves. Transverse and longitudinal ultrasonic velocities have been used to calculate Young?s modulus of these samples. The ultrasonic velocity and Young?s modulus values of polymer-TiO2 nanocomposites showed a linear relationship with the weight percentage of the polymer, which is due to the strong and effective interaction between the particles resulting from by reinforcing TiO2 to the polymer structure. The clustering that emerged with the increase in the amount of reinforcement in the SEM images became more pronounced and it was observed that pure polymer and TiO2 were homogeneously distributed. The porosity and hardness measurements of the polymer and polymer-TiO2 nanocomposites were examined. The hardness and porosity of the polymer structure approximately increased as the percentage values of TiO2 increased. Moreover, TGA results of polymer nanocomposites obtained by direct mixing showed that the thermal stability increased linearly as the weight ratio increase of TiO2 in comparison with the pure polymer.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3