Thermodynamic analysis of refrigerants used in ORC-VCC combined power systems for low temperature heat sources

Author:

Elbir Ahmet1,Kodaloglu Feyza1,Ucgul Ibrahim1,Sahin Mehmet2

Affiliation:

1. Renewable Energy Resources Research and Application Center, Suleyman Demirel University, Isparta, Turkey

2. Isparta University of Aplied Science, Technical Vocational High School, Isparta, Turkiye

Abstract

Fossil resources are largely used for energy supply. This situation causes environ?mental pollution. In recent years, studies in the field of more environmentally friend?ly and sustainable energy conversion technologies have increased. In this context, organic Rankine cycle (ORC) technology is combined with RES. In this study, combined ORC and vapor compression cycle (VCC) were investigated. The electricity produced in the combined ORC-VCC system was used both in the compressor of the VCC system and in the plant. The main factor affecting the efficiency of the combined ORC-VCC system is the refrigerant. Therefore, it is necessary to examine the selection of the most suitable refrigerant for an ORC-VCC based system. Fifteen different refrigerants were optimized with the enginering equation solver program, and energy and exergy analyzes of the systems were made separately. According to the results, the best energy efficiency and COP values among the refrigerants was found to be R40 (?ORC = 0.1206) for the ORC system and R113 (COP = 4.405) for the VCC system. For all system components in the VCC, the most exergy destruction occurs in the evaporator, followed by the compressor, condenser, and throttle, respectively. In ORC, the most exergy destruction is in the evaporator, followed by the condenser, tube and pump, respectively. The total efficiency was found to be (? = 0.53) for the combined ORC-VCC system. The total exergetic efficiency was found to be (?glob = 0.26) for the combined ORC-VCC system.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3