A new curve for temperature-time relationship in compartment fire

Author:

Blagojevic Milan1,Pesic Dusica1

Affiliation:

1. Faculty of Occupational Safety, Niš

Abstract

An idealized temperature curve of compartment fire has three, distinct phases: growth phase, steady-burning (or fully developed) phase, and decay phase. Standard temperature-time curves are not suitable for describing the fire phenomena because it does not take into account fire load nor ventilation conditions, and fire according to these curves never decays. The temperature curve of compartment fire, especially the growth phase, may be treated like pulse phenomena. This means that it is possible to approximate the fire development with some suitable function that satisfactory describes the pulse phenomena. The shape of the time-temperature curve for fire with flashover has characteristic peak before the decay phase, or slow decreases before the decay phase - in absence of flashover. In this paper we propose the definition of the time-temperature curve by means of a unique function in which the quantities of fuel and ventilation conditions are defined with parameters. This function is very convenient for approximation of the development of compartment fire with flashover, for smouldering combustion which has fire curve without characteristic peak, this function can be used only for approximation of growth period of fire.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3