Examination of some toxicological parameters of dimethylamylamine when consumed alone or with caffeine

Author:

Güner Adem1,Türkez Hasan2

Affiliation:

1. Department of Biology, Faculty of Science and Art, Giresun University, Güre, Giresun, Turkey

2. Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey + Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy

Abstract

Dimethylamylamine (DMAA) is a bodybuilding supplement with fat-burner or performance-enhancing properties. DMAA is often combined with caffeine to enhance its effectiveness and this can have serious adverse effects on health. In this study, we examined for the first time the cytotoxic, oxidative and genotoxic effects of DMAA in the presence or absence of caffeine in lymphocytes cultured from human blood, and its vascular irritant effects in a hen's chorioallantoic membrane egg test. Cytotoxic effects were observed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), lactate dehydrogenase release (LDH), which serves as a measure of cell membrane damage, changes in the mitotic index (MI) and proliferative rate index (PRI) assays. Oxidative changes were evaluated by the total antioxidant activity and the total oxidative status assay. Genotoxic damage was analyzed by chromosomal aberration and micronucleus assays. DMAA and its combination with caffeine (cDMAA) had no genotoxic effects. DMAA (1000 mg/L) and cDMAA (500 and 1000 mg/L) decreased cell viability while significantly increasing LDH activity, MI and the oxidative level. DMAA and cDMAA caused weak and moderate vascular irritant effects, respectively. In conclusion, DMAA exhibits cytotoxic effects via membrane dysfunction and mitotic disturbance following increased oxidative stress in a dose- and caffeine-dependent manner.

Publisher

National Library of Serbia

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3