Improved algorithms for computing the greatest right and left invariant Boolean matrices and their application

Author:

Stanimirovic Stefan1,Stamenkovic Aleksandar1,Ciric Miroslav1ORCID

Affiliation:

1. University of Niš, Faculty of Sciences and Mathematics Niš, Serbia

Abstract

We define right and left invariant matrices as Boolean matrices that are solutions to certain systems of matrix equations and inequalities over additively idempotent semirings. We provide improved algorithms for computing the greatest right and left invariant equivalence and quasi-order matrices. The improvements are based on the usage of the well-known partition refinement technique. Afterwards, we present the application of right invariant matrices in the determinization of weighted automata over additively idempotent, commutative and zero-divisor free semirings. In particular, we provide improvements of the well-known determinization method of weighted automata over tropical semirings given by Mohri [Computational Linguistics 23 (2) (1997) 269-311].

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3