Adsorption of CO2, N2, CH4, and their mixtures on silicalite: A critical evaluation of force fields

Author:

Arvelos Sarah1,Diógenes Thalles1,Hori Eponina1,Lobato Romanielo1

Affiliation:

1. Faculdade de Engenharia Química, Universidade Federal de Uberlândia, Campus Santa Mônica, Uberlândia, Brazil

Abstract

The use of molecular simulation has been growing in the field of engineering, fueled not just by the advances in computational power but also on the availability of reliable software. One potential use of molecular simulation is related to the screening of materials for a specific application. The reliability of molecular simulation results depends on the trustworthiness of the force field used, which for engineering purposes should be as simple as possible. This work provides an evaluation of the potential accuracy cost of using simple generic force fields to predict the adsorption of CO2, CH4, N2 and their mixtures on MFI. We employed the GCMC technique for this investigation. Different models and force fields to describe adsorbates and adsorbent were tested. The force fields performances were estimated through comparison with available adsorption experimental data. Transferability was evaluated on the prediction of pure and mixtures adsorption on CHA, LTA and FER. The results showed that a simple force field presented similar performance when compared to a more sophisticated one.

Publisher

National Library of Serbia

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3