Optimization and analysis of pressure swing adsorption process for oxygen production from air under uncertainty

Author:

Akulinin Evgeny1,Golubyatnikov Oleg1,Dvoretsky Dmitry1,Dvoretsky Stanislav1

Affiliation:

1. Tambov State Technical University Tambov, Russia

Abstract

Pressure swing adsorption (PSA) units are widely used for atmospheric air separation and oxygen concentration. However, the efficiency of such installations is reduced due to accidental changes in the characteristics of the atmospheric air to be separated. The article formulates and solves the problem of optimizing the regimes of operation of PSA units with zeolite adsorbent 13X, according to the criterion of oxygen recovery rate in the conditions of interval uncertainty of composition, temperature and pressure of atmospheric air. The optimization problem also takes into account the fulfillment of the requirements on purity of oxygen, productivity of the unit and resource saving of granulated adsorbent from granule abrasion. It is proposed to provide adsorbent saving by limiting the speed of incoming flow in the frontal layer of the adsorbent by means of "soft" stepwise change of the degree of opening of control inlet and outlet valves of the unit. The problem (including the search for time change programs for the degree of opening of control valves) was solved with the use of the developed mathematical model of cyclic heat- and mass exchange processes of adsorption-desorption in a PSA unit and a heuristic iterative algorithm. The comparative analysis of the results of the optimization problem solution, with and without taking into account the constraint on the gas flow velocity in the frontal layer of the adsorbent, is carried out. The influence of the specified requirements for the performance of the PSA unit and the purity of oxygen on the degree of its recovery has been studied.

Publisher

National Library of Serbia

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3