Development and validation of an LC-MS/MS method for the determination of adapalene in pharmaceutical forms for skin application

Author:

Dobricic Vladimir1ORCID,Bubic-Pajic Natasa2,Markovic Bojan1ORCID,Vladimirov Sote1,Savic Snezana3ORCID,Vuleta Gordana3

Affiliation:

1. Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Belgrade

2. University of Banja Luka, Faculty of Medicine, Department of Pharmaceutical Technology, Banja Luka, Bosnia and Herzegovina

3. Faculty of Pharmacy, Department of Pharmaceutical Technology, Belgrade

Abstract

Development and validation of a liquid chromatography - tandem mass spectrometry (LC-MS/MS) method for the determination of adapalene in pharmaceutical forms for skin application were presented. The MS/MS analysis of adapalene was performed by use of three mobile phases, consisted of acetonitrile and (a) 0.1 % formic acid, (b) 0.1 % trifluoroacetic acid and (c) 20 mM ammonium acetate. The strongest signals of parent ion and dominant product ion were obtained in negative mode by use of the mobile phase (c). Validation of this method was performed according to the ICH guidelines. Small variations of selected chromatographic parameters (concentration of ammonium acetate, mobile phase composition, column temperature and flow rate) did not affect qualitative and quantitative system responses significantly, which proved method?s robustness. The method is specific for the determination of adapalene. Linearity was proved in the concentration range 6.7 - 700.0 ng mL-1 (r = 0.9990), with limits of detection and quantification 2.0 ng mL-1 and 6.7 ng mL-1, respectively. Accuracy was confirmed by calculated recoveries (98.4 % - 101.5 %). Precision was tested at three levels: injection repeatability, analysis repeatability and intermediate precision. Calculated relative standard deviations were less than 1, 2 and 3 %, respectively.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3