Renewable energy and the role of molten salts and carbon

Author:

Fray D.1

Affiliation:

1. Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK

Abstract

Molten carbonate fuel cells have been under development for a number of years and reliable units are successfully working at 250kW scale and demonstration units have produced up to 2 MW. Although these cells cannot be considered as renewable as the fuel, hydrogen or carbon monoxide is consumed and not regenerated, the excellent reliability of such a cell can act as a stimulus to innovative development of similar cells with different outcomes. Molten salt electrolytes based upon LiCl - Li2O can be used to convert carbon dioxide, either drawn from the output of a conventional thermal power station or from the atmosphere, to carbon monoxide or carbon. Recently, dimensionally stable anodes have been developed for molten salt electrolytes, based upon alkali or alkaline ruthenates which are highly electronically conducting and these may allow the concept of high temperature batteries to be developed in which an alkali or alkaline earth element reacts with air to form oxides when the battery is discharging and the oxide decomposes when the battery is being recharged. Batteries using these concepts may be based upon the Hall-Heroult cell, which is used worldwide for the production of aluminium on an industrial scale, and could be used for load levelling. Lithium ion batteries are, at present, the preferred energy source for cars in 2050 as there are sufficient lithium reserves to satisfy the world?s energy needs for this particular application. Graphite is used in lithium ion batteries as the anode but the capacity is relatively low. Silicon and tin have much higher capacities and the use of these materials, encapsulated in carbon nanotubes and nanoparticles will be described. This paper will review these interesting developments and demonstrate that a combination of carbon and molten salts can offer novel ways of storing energy and converting carbon dioxide into useful products.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3