Entropy change of open thermodynamic systems in self-organizing processes

Author:

Popovic Marko1

Affiliation:

1. Department of Chemistry and Biochemistry, Brigham Young University, Provo, USA

Abstract

The thermodynamic models available in the literature predict that during self-organizing processes the entropy of a cell considered as an open thermodynamic system decreases. This prediction leads to conclusion that cell imports a certain amount of negative entropy and generates entropy during irreversible metabolic processes. The controversial concept of negentropy was criticized recently. In this research a new model was proposed that isn?t based on the steady state approximation and describes living systems more realistically. The analysis of the suggested model of an open thermodynamic system far from equilibrium, led to the conclusion that the entropy during self-organizing processes increases during growth (of a molecule or a cell). Using as models the synthesis of an oligopeptide and a growing hydrocarbon chain, it was shown that entropy of an open thermodynamic system increases during addition of monomers (a self-organizing process). A derived equation confirms the results obtained by calculations with literature experimental values of molar entropy. The decrease of entropy observed in self-organizing processes occurred only during phase transition.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3