Optimizing data locality by executor allocation in spark computing environment

Author:

Fu Zhongming1,He Mengsi1,Tang Zhuo2,Zhang Yang3

Affiliation:

1. Computer School, University of South China, and Hunan Provincial Base for Scientific and Technological Innovation Cooperation Hengyang, Hunan, China

2. College of Information Science and Engineering, Hunan University, and National Supercomputing Center Changsha, Hunan, China

3. Science and Technology on Parallel and Distributed Laboratory (PDL), National University of Defense Technology Changsha, Hunan, China

Abstract

Data locality is an important concept in big data processing. Most of the existing research optimized data locality from the aspect of task scheduling. However, as the execution container of tasks, the executors started on which nodes can directly affect the locality level achieved by the tasks. This paper tries to improve the data locality by executor allocation for reduce stage in Spark computing environment. Firstly, we calculate the network distance matrix of executors and formulate an optimal executor allocation problem to minimize the total communication distance. Then, when the network distance between executors satisfies the triangular inequality, an approximate algorithm is proposed; and when the network distance between executors does not satisfy the triangular inequality, a greedy algorithm is proposed. Finally, we evaluate the performance of our algorithms in a practical Spark cluster by using several representative micro-benchmarks (Sort and Join) and macro-benchmarks (PageRank and LDA). Experimental results show that the proposed algorithms can decrease the execution time of tasks for lower data communication.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3