A novel feature fusion model based on non-subsampled shear-wave transform for retinal blood vessel segmentation

Author:

Lijuan Feng1,Fan Zhang2

Affiliation:

1. School of Electronics and Electrical Engineering, Zhengzhou University of Science and Technology, Zhengzhou City, China

2. Zhengzhou University of Industrial Technology, Zhengzhou , China

Abstract

Background: Fundus image is a projection of the inner surface of the eye, which can be used to analyze and judge the distribution of blood vessels on the retina due to its different shape, bifurcation and elongation. Vascular trees are the most stable features in medical images and can be used for biometrics. Ophthalmologists can effectively screen and determine the ophthalmic conditions of diabetic retinopathy, glaucoma and microaneurysms by the morphology of blood vessels presented in the fundus images. Traditional unsupervised learning methods include matched filtering method, morphological processing method, deformation model method, etc. However, due to the great difference in the feature complexity of different fundus image morphology, the traditional methods are relatively simple in coding, poor in the extraction degree of vascular features, poor in segmentation effect, and unable to meet the needs of practical clinical assistance. Methods: In this paper, we propose a new feature fusion model based on non-subsampled shearwave transform for retinal blood vessel segmentation. The contrast between blood vessels and background is enhanced by pre-processing. The vascular contour features and detailed features are extracted under the multi-scale framework, and then the image is postprocessed. The fundus images are decomposed into low frequency sub-band and high frequency sub-band by non-subsampled shear-wave transform. The two feature images are fused by regional definition weighting and guided filtering respectively, and the vascular detection image is obtained by calculating the maximum value of the corresponding pixels at each scale. Finally, the Otsu method is used for segmentation. Results: The experimental results on DRIVE data set show that the proposed method can accurately segment the vascular contour while retaining a large number of small vascular branches with high accuracy. Conclusion: The proposed method has a high accuracy and can perform vascular segmentation well on the premise of ensuring sensitivity.

Publisher

National Library of Serbia

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3