Generative adversarial network based on LSTM and convolutional block attention module for industrial smoke image recognition

Author:

Li Dahai1,Yang Rui1,Chen Su2

Affiliation:

1. School of Electronics and Electrical Engineering, Zhengzhou University of Science and Technology, Zhengzhou, China

2. Department of Mechanical and Electrical Engineering, Henan Vocational College of Water Conservancy and Environment Zhengzhou, China

Abstract

The industrial smoke scene is complex and diverse, and the cost of labeling a large number of smoke data is too high. Under the existing conditions, it is very challenging to efficiently use a large number of existing scene annotation data and network models to complete the image classification and recognition task in the industrial smoke scene. Traditional deep learn-based networks can be directly and efficiently applied to normal scene classification, but there will be a large loss of accuracy in industrial smoke scene. Therefore, we propose a novel generative adversarial network based on LSTM and convolutional block attention module for industrial smoke image recognition. In this paper, a low-cost data enhancement method is used to effectively reduce the difference in the pixel field of the image. The smoke image is input into the LSTM in generator and encoded as a hidden layer vector. This hidden layer vector is then entered into the discriminator. Meanwhile, a convolutional block attention module is integrated into the discriminator to improve the feature self-extraction ability of the discriminator model, so as to improve the performance of the whole smoke image recognition network. Experiments are carried out on real diversified industrial smoke scene data, and the results show that the proposed method achieves better image classification and recognition effect. In particular, the F scores are all above 89%, which is the best among all the results.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Construction of English Resource Database Network Information Recommendation Model Based on LSTM Algorithm;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3