Effect of condensate flow rate on retention angle on horizontal low-finned tubes

Author:

Ali Hafiz1,Ali Hassan1,Ali Muhammad1,Imran Shahid1,Kamran Muhammad1,Farukh Farukh1

Affiliation:

1. Nema

Abstract

The paper reports experimental results using simulated condensation on eight hor?izontal integral finned tubes with different fin spacing but same root diameter. Condensation was simulated with low approaching zero vapor velocity of condensate using three liquids (water, ethylene glycol, and R141b) supplied to the tube via small holes between the fins along the top of the tubes. Controlling parameters of the investigation were fin spacing of condensation tubes, flow rate of condensate and surface tension to density ratio of the condensate. The results indicate that the retention angle (measured from the top of the tube to the position where the inter-fin space is completely filled with liquid) increases with the increase in fin spacing. Also, retention angle increases as the density of the condensate increases but retention angle decreases with increase in surface tension. Interesting finding is seen as retention angle remains constant with increase in condensate flow rate, starting from very low (nearly zero) flow rate to the flow rate at which the tube gets fully flooded. The critical flow rate for eight tubes of defined fin density against three working fluids is measured. Results obtained from simulated condensation for almost zero condensate velocity are in good agreement with earlier data and theoretical model for retention angle on such tubes

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3