Performance evaluation of nanofluid on parabolic trough solar collector

Author:

Vijayan Gopalsamy1,Rajasekaran Karunakaran2

Affiliation:

1. Anna University-Chennai, Department of Mechanical Engineering, Tamilnadu, India

2. UCE-Kanchipuram, Anna University-Chennai, Tamilnadu, Department of Mechanical Engineering, India

Abstract

In the present work, the performance of aluminum oxide and deionized water nanofluid used as heat transfer fluid on a parabolic trough solar collector system with hot water generation tank is evaluated. The parabolic trough solar collector is developed using easily and locally accessible materials. Five different concentrations of aluminum oxide and deionized water based nanofluid from 0.5-2.5% is prepared by the magnetic stirrer initially and then the mixture is subjected to ultrasonication process to break aggregates with the absence of surfactant. The prepared nanofluids are allowed to flow through the absorber which is located at a focal point of the solar collector. The performance of nanofluid is compared with pure deionized water. The test is conducted from 8.00 a. m. to 16.00 p. m. daily in the whole length of the test span. The heat transfer fluid is allowed to flow at a mass-flow rate of 0.020 kg/s and 0.09246 m/s velocities. The maximum solar radiation is 821 W/m2, and maximum efficiency is observed at noon time 60.41% for deionized water and 60.49% for 2.5% volumetric fraction of alumina nanofluid. The efficiency enhancement was 3.90% than deionized water. The influence of the critical parameter on the performance is also examined.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3