Numerical investigation of combined effect of nanofluids and multiple impinging jets on heat transfer

Author:

Kilic Mustafa1,Ali Hafiz2

Affiliation:

1. Adana Science and Technology University, Department of Mechanical Engineering, Adana, Turkey

2. University of Engineering and Technology, Mechanical Engineering Department, Taxila, Pakistan

Abstract

The present study is focused on numerical investigation of heat enhancement and fluid-flow from a heated surface by using nanofluids with three impinging jets. Effects of different volume ratio, different heat flux and different types of nanofluids (CuO-water, Al2O3-water, Cu-water, TiO-water, and pure water) on heat transfer and fluid-flow were studied numerically. The CuO-water nanofluid was used as a coolant in the other parameter. Three impinging jets were used to cool the surface. Low Reynolds number k-? turbulent model of PHONEICS CFD code was used for numerical analysis. It is obtained that increasing volume ratio from ?=2% to 8% causes an increase of 10.4% on average Nusselt number. Increasing heat flux six times has not a significant effect on average Nusselt number. Using Cu-water nanofluid causes an increase of 2.2%, 5.1%, 4.6%, and 9.6% on average Nusselt number with respect to CuO-water, TiO-water, Al2O3-water, and pure water.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3