Modeling of overall heat transfer coefficient of a concentric double pipe heat exchanger with limited experimental data by using curve fitting and ANN combination

Author:

Kocyigit Necati1,Bulgurcu Huseyin1

Affiliation:

1. Konukisi Consultant, Basaksehir, Istanbul, Turkey

Abstract

The modeling accuracy of artificial neural networks (ANN) was evaluated by using limited heat exchanger data acquired experimentally. The artificial neural networks were used for predicting the overall heat transfer coefficient of a concentric double pipe heat exchanger where oil flowed inside the inner tube while the water flowed in the outer tube. In the cases of parallel and counter flows, the experimental data were collected by testing heat exchanger in wide range of operating conditions. Curve fitting and artificial neural network combination was used for the estimation of the overall heat transfer coefficient to compensate the experimental errors in the data. The curve fitting was used to detect the trend and generate data points between the experimentally collected points. The artificial neural network was trained better from the generated data set. The feed forward type artificial neural network was trained by using the Levenberg-Marquardt algorithm. Two backpropagation network type artificial neural network algorithms were also used, and their performance were compared with the estimation of the Levenberg-Marquardt algorithm. The average estimation error between the predictions and the experimental data were in the range of 1.31e?4 to 4.35e?2%. The study confirmed that curve fitting and artificial neural network combination could be used effectively to estimate the overall heat transfer coefficient of heat exchanger.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3