Proper collimation effect on radiation dose and image quality in thoracic spine radiography

Author:

Pazanin Anamaria1,Skrk Damijan2,Zalokar Nika1,Mekis Nejc1

Affiliation:

1. Medical Imaging and Radiotherapy Department, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia

2. Slovenian Radiation Protection Administration, Ljubljana, Slovenia

Abstract

The purpose of this research was to determine the impact of collimation in thoracic spine radiography on patient exposure and image quality. The study was performed on 84 patients referred to thoracic spine radiography. Patients were randomly divided into two equal groups of 42. The first group was imaged according to the standard collimation protocol used in one of the hospitals in Croatia while the second group was imaged by applying ?optimal? collimation, image field size was individually collimated for each patient or according to the greatest image field collimation depicted in professional literature. For each patient body mass index, image field size, exposure conditions and dose area product were noted and absorbed doses by organs were calculated, image quality was assessed. There were no statistically significant differences in BMI between the two groups of patients. With the optimal collimation the size of the imaging field in the anteroposterior projection was reduced by 45 % ( p < 0.001) and in the lateral projection by 41 % (p < 0.001). The study also showed reduced values of DAP for anteroposterior projection by 34 % ( p = 0.007) and for lateral projection by 23 % ( p = 0.040). The mean absorbed dose to the selected organs decreased by 26 % in the anteroposterior projection and by 28 % in the lateral projection. In addition, the optimal collimation protocol improved image quality by 13 % in anteroposterior projection. No differences in image quality were found in lateral projection. By carrying out this research we have demonstrated that optimal collimation in thoracic spine imaging has a strong influence on patient exposure to radiation and has a positive impact on image quality.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3