Microstructure development during thermomechanical treatment of Al-Mg-Si alloy

Author:

Martinova Z.1,Zlateva G.2

Affiliation:

1. University of Chemical Technology&Metallurgy, Sofia, Bulgaria

2. Institute of Metal Science, Bulgarian Academy of Sciences, Sofia, Bulgaria

Abstract

The effect of natural aging and 95% cold deformation on the microstructure evolution and aging characteristics in commercial Al - 1 mass % Mg2Si alloy subjected to thermomechanical treatment (TMT) was examined. Transmission electron microscopy observations, tensile tests and electrical conductivity measurements were carried out in order to correlate microstructural features to properties on each TMT step. It was established that pre-aging at room temperature affected the morphology of dislocation structure induced by next cold deformation. The observed transition from cellular to homogenous dislocation distribution was explained by the different stability of zones produced by pre-aging of different duration. Natural aging suppressed recovery processes during post-deformation artificial aging, especially after prolonged storage after quenching and at lower aging temperature. It influenced the morphology of precipitates produced by post deformation artificial aging also. The overall effect of TMT involving prior-deformation natural aging in the scheme, on hardness, tensile properties and electrical conductivity is discussed based on experimental microstruture observations.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3