Effect of thermal cycling on mechanical properties and energy evolution of sandstone

Author:

Hou Peng1,Gao Lin2,Xing Yan2,Zhang Zhao-Peng3

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu Province, China + State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu Province, China + Key Laboratory of Deep Earth Science and Engineering (Sichuan University), Ministry of Education, Chengdu, China

2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, Jiangsu Province, China

3. Key Laboratory of Deep Earth Science and Engineering (Sichuan University), Ministry of Education, Chengdu, China

Abstract

In geothermal energy exploration, the reservoir rock is always subjected to thermal cycles and its physical properties will be seriously affected. In this paper, the changes of the internal structure of the sandstone after the thermal cycle are firstly evaluated by ultrasonic tests. Then, uniaxial compression tests are conducted on the treated specimens. The effects of the thermal cycling on mechanical properties and energy evolution law of the sandstone are analyzed. The results show that the density, P-wave velocity and mechanical properties of the sandstone reduced with the increase in the thermal cycle, especially in the high temperature cycle. The increase of the temperature in the thermal cycle can increase the influence of the thermal cycle on the energy evolution law.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3