The performance of an eco-friendly adsorbent for methylene blue removal from aqueous solution: Kinetic, isotherm, and thermodynamic approaches

Author:

Ghibate Rajae1ORCID,Ben Baaziz2,Amechrouq Ali3,Taouil Rachid4,Senhaji Omar3

Affiliation:

1. Laboratory of Physical Chemistry, Materials and Environment, Faculty of Sciences and Technologies, Moulay Ismail University of Meknes, Errachidia, Morocco

2. Laboratory of Materials Engineering for the Environment and Natural Resources, Faculty of Sciences and Technologies, Moulay Ismail University of Meknes, Errachidia, Morocco

3. Laboratory of Biomolecular and Macromolecular Chemistry, Moulay Ismail University of Meknes, Meknes, Morocco

4. Laboratory of Mechanics, Energetics, Automation, and Sustainable Development, Faculty of Science and Technology, Moulay Ismail University of Meknes, Errachidia, Morocco

Abstract

The current study aims to determine how well pomegranate peel can remove Methylene Blue (MB) from an aqueous solution. For this purpose, kinetic, isotherm, and thermodynamic adsorption studies were performed in a batch system. The rate of MB adsorption was rapid and reached equilibrium at about 60 minutes. The adsorption capacity reached approximately 42.71 mg g-1 at the initial dye concentration of 100 mg L-1. The kinetic modeling of MB adsorption was conducted using pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The pseudo-second-order model was found to be the most adequate for fitting the kinetic data based on R2, RMSE, ARE, and ?2 values. It was also discovered that MB adsorption onto pomegranate peel is not simply rate-limited by intraparticle diffusion. The isotherm approach showed a maximum adsorption capacity of 67.78 mg g-1 at 298 K using 2 g L-1 of pomegranate peel. Equilibrium modeling was also conducted. The four statistical values highlighted the better fit of the Langmuir model than the Freundlich model. Additionally, the exothermic and spontaneous nature of the adsorption process was revealed by thermodynamic research. These findings demonstrate the effectiveness of pomegranate peel as an eco-friendly absorbent for MB removal.

Publisher

National Library of Serbia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3