Numerical study to invistigate the effect of inlet gas velocity and Reynolds number on bubble formation in a viscous liquid

Author:

Islam Tariqul1,Ganesan P.1,Sahu J.N.2,Hamad F.A.3

Affiliation:

1. University of Malaya, Faculty of Engineering, Department of Mechanical Engineering, Kuala Lumpur, Malaysia

2. Institute Technology Brunei, Faculty of Engineering, Department of Petroleum and Chemical Engineering, Tungku Gadong, Brunei Darussalam

3. Teesside University, School of Science and Engineering, Middlesbrough, UK

Abstract

Bubble formation dynamics has great value in mineral recovery and the oil industry. In this paper, a single bubble formation process through an orifice in a rectangle domain is modelled to study the bubble formation characteristics using the volume of fluid (VOF) with the continuum surface force (CSF) method. The effect of gas inlet velocities, Ug ~ 0.1 - 0.3 m/s on bubble formation stages (i.e., expansion, elongation and pinch off), bubble contact angle, dynamics and static pressure, bubble departure diameter etc. was investigated through an orifice diameter of 1 mm. The method was also used to study the effect of Reynolds number, Re? ~ 1.32 - 120 on bubble formation when all other parameters were kept constant. It is found that a high inlet gas velocity accelerated the reducing of the bubble contact angle from an obtuse angle to an acute angle and the faster development of hemispherical shape of the bubble. It is also found that an increasing of Reynolds number caused speeding up of the bubble pinch-off and formed a smaller bubble neck height due to stronger vortex ring around the bubble neck.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3