Performance analysis of heat accumulation of solar thermal generator units by computer numerical simulation

Author:

Yan Xiaojin1,Pan Yan2

Affiliation:

1. Department of Graduate student, North China Institute of Aerospace Engineering, Langfang, Hebei, P.R. China

2. R&D department, ABB LV Installation Materials Co., Ltd. Beijing, BDA, Beijing, P.R. China

Abstract

The core carrier working substances of heat accumulation of solar thermal generator units are analyzed through computer numerical simulation analysis and simulation experiments, including the selection criteria of working substances, the mechanism of heat accumulation system, the correlation between power generation efficiency and the evaporation temperature of working substance, the correlation between the condensing temperature and condensing pressure of working substance, and the influence of working substance velocity on heat accumulation capacity. The results show that under the same radiation intensity, the greater the flow velocity of the working substance is, the worse the heat accumulation and heat conduction of the working substance is. As the condensing temperature of the working substance increases, the condensing pressure also increases. As the evaporation temperature of the working substance increases, the power generation efficiency of the working substance also increases significantly. In summary, the heat accumulation system based on the high efficiency working substances is vital for the normal operation of solar thermal generator units. Once the solar radiation intensity cannot meet the needs of power generation, the heat accumulation system will output previously-stored thermal energy. Meanwhile, its collection and release of thermal energy depend on the photovoltaic intensity. The constructed hot-oil working substance-based heat accumulation system satisfies the normal operation needs for thermal generator units, which is significant for subsequent research.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3