Simulation and operation control strategy of ground source thermal energy management system by cold and heat auxiliary technology

Author:

Xiong Shengtao1,Liu Zhenxing2,Li Qunqiao3,Chen Yuan4,Cai Xiaoyan4,Hu Na4,Yu Qiuyue4

Affiliation:

1. Wuhan University of Science and Technology, Wuhan Hubei, P.R. China + City College, Wuhan University of Science and Technology, Wuhan Hubei, P.R. China

2. Wuhan University of Science and Technology, Wuhan Hubei, P.R. China

3. The No. 1 Steel-Plant of BAOSTEEL, Wuhan Hubei, P.R. China

4. City College, Wuhan University of Science and Technology, Wuhan Hubei, P.R. China

Abstract

To explore the performance of the ground source thermal energy management system under the cold and heat sources, based on the cold and heat auxiliary technology, a ground source thermal energy composite management system is constructed and simulated. The constructed ground source heat pump-refrigeration unit-hybrid heating management system of urban heating networks, as well as the simple system, are analyzed and investigated in terms of power consumption and underground temperature control. The research results show that the constructed ground source heat pump-refrigeration unit-hybrid heating management system of the urban heating network has lower power and energy consumption than a simple system during the same period, which meets the economic requirements and guarantees the system with relatively low energy consumption. For underground temperature control, the constructed system is more stable than a simple system without excessive temperature fluctuations. The operation control strategy of the constructed system is mainly for chiller units, heat pump units, cooling towers, source side, and side circulation water pump modules. In summary, the constructed ground source heat pump-refrigeration unit-hybrid heating management system of an urban heating network based on the ground source heat pump meets the requirements for energy consumption and temperature control and can operate the control strategy normally. The results are significant for subsequent researches on the ground source thermal energy management system based on cold and heat auxiliary technology.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3