Experimental study of the effect of single walled carbon nanotube/water nanofluid on the performance of a two-phase closed thermosyphon

Author:

Chehrazi Mohammad1,Moghadas Bahareh1

Affiliation:

1. Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran

Abstract

Thermosyphons are one of the most efficient heat exchanger apparatus that are used extensively in different industries. One of the most common uses of this device is energy recovery, which is essential due to the energy crisis. Several parameters, such as geometric dimensions, type of working fluid and type of the body, affect the efficiency of a thermosyphon. In this work, the effect of type and concentration of single-walled carbon nanotube nanofluid (SWCNT/water) on the efficiency of heat transfer in a two-phase closed thermosyphon (TPCT) was investigated. For this purpose, a system with a two- -phase closed thermosyphon was initially constructed. Then SWCNT/water nanofluids at 0.2, 0.5 and 1 % weight concentration were used as the working fluid in the thermosyphon system. The results of the current experiments showed that the addition of a nanofluid at any weight concentration and an increase in input power increases the performance of the system. In addition, the heat resistance of the TPCT was reduced when the level of SWCNT and input power increased. Hence, for the prepared nanofluid samples, the minimum thermal resistance was obtained at 1 wt. % SWCNT and 120 W. Moreover, the Nusselt number increased with increasing input power and decreased with increasing concentration. In all experiments, all the prepared nanofluid samples had a significantly better thermal performance in comparison with pure water.

Publisher

National Library of Serbia

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3