Some covariant and contravariant fixed point theorems over bipolar p-metric spaces and applications

Author:

Roy Kushal1,Saha Mantu1,George Reny2,Guran Liliana3,Mitrovic Zoran4ORCID

Affiliation:

1. Department of Mathematics, The University of Burdwan, Purba Bardhaman, West Bengal, India

2. Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia + Department of Mathematics and Computer Science, St. Thomas College, Bhilai, Chhattisgarh, India

3. Department of Pharmaceutical Sciences, ”Vasile Goldiş” Western University of Arad, Arad, Romania

4. University of Banja Luka, Faculty of Electrical Engineering, Banja Luka, Bosnia and Herzegovina

Abstract

In this article, the concept of bipolar p-metric spaces has been introduced as a generalization of usual metric spaces, b-metric spaces and also p-metric spaces. In view of this notion we prove Banach, Reich, Bianchini and Jaggi type fixed point theorems over such spaces. Supporting examples have been given in order to examine the validity of the underlying space and in support of our fixed point theorems.

Publisher

National Library of Serbia

Subject

General Mathematics

Reference9 articles.

1. D. Bajović, Z. D. Mitrović and M. Saha, Remark on contraction principle in conetvs b-metric spaces, J. Anal., (2020), https://doi.org/10.1007/s41478-020-00261-x.

2. I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal., 30, Ulyanovsk. Gos. Ped. Inst, Ulyanovsk (1989), 26-37.

3. S. Czerwik, Contraction mappings in b−metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5-11.

4. A. Mutlu, U. Gürdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362-5373.

5. A. Mutlu, K. Özkan and U. Gürdal, Coupled fixed point theorems on bipolar metric spaces, European J. Pure Appl. Math., 10(4) (2017), 655-667.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3