Possibility of application nuclear magnetic resonance for measurement of fluid-flow

Author:

Kartalovic Nenad1,Djekic Saska2,Djekic Sasa3,Nikezic Dusan4ORCID,Ramadani Uzahir4ORCID

Affiliation:

1. Institute of Electrical Engineering “Nikola Tesla”, Belgrade, Serbia

2. Department of Laboratory Diagnostics "Health Center", Doboj, Bosnia and Herzegovina

3. Power utility of Republic of Srpska Elektro Doboj a.d., Doboj, Bosnia and Herzegovina

4. Vinča Institute of Nuclear Sciences, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia

Abstract

The paper considers the application of nuclear magnetic resonance for measurement of fluid-flow. The paper is of an experimental nature. Flowmeter based on nuclear magnetic resonance is extremely precise. The combined measurement uncertainty can be 0.1 %. Such a value of measurement uncertainty indicates that it is a matter of a deterministic and not of a stochastic quantity. This high degree of reliability of the method is theoretically and mathematically described. The paper presents a measurement scheme for flow measurement. Water flow measurement was performed on the principle of nuclear magnetic resonance and on the basis of tritiated water (which is considered to be the most accurate classical method). The obtained results show that the measurement of flow based on nuclear magnetic resonance is more accurate (especially at higher flow). This is explained by the higher inertial mass of HTO tritiated water molecules than the standard H2 O mass and the possible transition of tritiated water to H3HeO. In this way, it has been proven that tracing water based on nuclear magnetic resonance is the only real tracing of water by water. The obtained results show that tracing water with tritiated or heavy water is not tracing water by water which is explained by different inertial masses.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3