Histopathology of Chironomus riparius (Diptera, Chironomidae) exposed to metal oxide nanoparticles

Author:

Stojanovic Jelena1ORCID,Milosevic Djuradj1,Vitorovic Jelena1,Savic-Zdravkovic Dimitrija1ORCID,Stankovic Nikola1ORCID,Stankovic Jelena1,Vasiljevic Perica1ORCID

Affiliation:

1. Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia

Abstract

As the production of metal-based nanomaterials increases, it is inevitable that nano-scale products and byproducts will enter the aquatic environment. In terms of global production, the most abundant nano-oxides are TiO2, CeO2 and Fe3O4 nanoparticles. Chironomus riparius is commonly used for ecotoxicological assessment and defining its histopathological biomarkers that showcase the toxic effect of tested nanoparticles should lead to a better understanding of the consequences of nanomaterial accumulation in aquatic ecosystems. In this study, a histological description of the digestive and excretory systems as well as the fat body structure of C. riparius larvae is provided. In addition, potential histological biomarkers of nano-oxide toxicity were determined based on the obtained histopathological alterations in organs. Vacuolization was observed in epithelial cells of midgut region I that were treated with nano-Fe3O4 as well as in Malpighian tubules treated with nano-Fe3O4 and nano-CeO2. Larvae exposed to nano-TiO2 showed alterations in the fat body and midgut region II tissue architecture. Additionally, shortening of the intestinal brush border was determined in groups exposed to nano-Fe3O4. These results reveal the high sensitivity of these organs, which can be used as biomarkers in histopathological assessment and therefore lead to further improvement of existing methodology in ecotoxicological studies.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3